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ABSTRACT
Errore in tlie division of power by a variable-power divider using phase
i'i shifters and a pailr of 3~dB couplers are determined as a function of an incor-
rect setting of the phase shifters. The insertion phase, of the phase shift-
ers, is assumed to have a Gaussian distributiorn about the desired value and
the resultant probability distribution of the power division ie calculated.
Curves are given for the probability that PA falls within a given error.

These curves are computed from the probability density function of PA which

is also shown graphically.
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i Ervor Analysis of a Variable~Power Divider ;
¢ i
f A variable-power dividing four-port junction consisting of a magic "tee", %
: a 3~dB-short-slot coupler, and two latching-ferrite phase-shifters, as indi- % ;a
. i
4 ;
cated schematically in Fig. 1, has output signals given by the following ; ;
= equations: ! f
L 9 n .
2 b4 2] 372 o
; EA = sin -——i--— - Z'- e (1) ,
S O+t ‘
x b= 342+ |
3 E = cosl—ant-Tle 2 b (2) : 3
: B L2 4 J {
‘ where ¢1 and ¢7 are the insertion phase shift of the latching~phase shifters. i 5
é ' b
Y These equations assume the magic tee and 3-dB coupler are perfect lossless ; g
g devices, an assumption that is reasonable in view of the comparative arror in % E:
] foo
: establishing ¢1 and ¢2. f o
‘: e 6= venes)
fd L
V2 e L
[ . ¢1 -8 f‘?
X £e 0 — R
J2
gt." P ¢2 o EA :‘f\
Fig. 1. Variable-Power Divider. ;
1
3
¢




Equations (1) and (2) can be put in a somewhat simpler form if we assume ¢2

varies from % to m and ¢, varies from 0 to %; that is ¢1 has a minimum inser-

tion phase o€ g-radians. In addition we let £ = ¢1—¢2-ﬂ/2, and consider only

the power delivered to the output ports since the output signals are always

in phase (because we also assume the same insertion loss for each phase

shifter) and cur interest centers on the device as a power divider.

Hence
- sin? &
P, sin 2 (3)
and
- cos? &
Py = cos > (4)

The length, T, of a pulse applied to the ferrite phase shifter determines

its insertion phase., The relationship between insertion phase and pulse

width is non-linear; it varies as a function of temperature and agiug, and

each device 1s also somewhat different from all other "identical" devices., The

problem add:essed in this note concerns determining the error in PA and PB

when a polynomial representation such as;

. .Z; a¢" (5)
nB

is used to set the phase shifters, in any variable power divider (VPD), to

obtain a desired division of power.

Toward this end let us first determine a method of obtaining (5), or its
inverse
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¢ 'Z anT“, (5a)

n=0

and what probability density function (pdf) we should assign to the dependent
variable. Although it is customary to determine T for a given power division
by using (5) and (3), T is ultimately applied to the control equipment so as
to obtain the desired power division. Hence it is more practical to consider
T as the independent variable and use (5a) ani (3) or (4) to evaluate the
error in PA and PB'

In particular, let us determine the insertion phase, ¢mn of a large num-
ber of phase shifters say M= 40 or more, (m= phase shifter number, n= drive pulse
duration) for a fin..te set of error free applied control pulses ('cl,'rz. . .TN) and sev-
eral temperatures and frequencies in the operating range. Assuming ¢mn’ for a parvic-
ular valve of n= 4, tohave a Gaussian distribution about the mean value, 751.

(Efi = (1/M) ?1 d)mi), the standard deviation oi and 761 are computed. (In a
most exact r.‘a‘t'usxlysis one would attempt to determine the actual frequency func-
tion, or pdf, but the assumed Caussian and perhaps a uniform distribution
should establish an interesting bound as will be discussed later.) The

i
regression analysis and the a, of (5a) are determined, It may also be useful

values of '51 and T, are then fit to a pth degree polynomial by a suitable

to determine the b ,in

(6)
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in the same manner. Hence (5a) and (6, together with assumed Gaussian dis-
tribution, define the statistical performance of the phase shifters as a group.

For a Gaussian distribution of ¢>(1:i), for fixed Ti’ the linear combin-

ation
£ = ¢(1y) - ¢(1,) %
is also a Gaussian distribution with mean E = 752’ - -rb'm and variance
C)‘2 = J 2 + 0 2.
2 m

It remains to find the pdf of P, (u) , and then the probability that PA
lies between PA+ APA and PA_ APA. Toward tuils end we recognize that the prob-

ability density function of £ is given by

_F\ 2
1)

Pg (x) = (8)

Vit o

The relationship between PA’ or P_ and £ 13 obtained frem (3) and (4) and

B

rewritten nere as

1 1 )
PA 5= 2 cosf = l-PB (9a)
PB = %— + % cost (9b)
The probability Xy < PA < x, is given by
X2
p[xl < PA < x2] -f pA(u)dU (10)

X
where xp and x) are assumed values of PA.

Sketching (8) and (9b) (see Fig. 2a and 2b),
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Fig. 2a. Probability density function of £, Fig. 2b. Distribution of PA. %
g it is apparent that PA is a periodic function of £ aud Jitains a value less ;
: {
4 than x for all £ between -Ex + 2nm and Ex + 2nm where n is any integer /
3 i
; between -» and «, Hence from Figs. 2a and 2b we can write ;
%
}
z o g¥+2n'ﬂ §
PP <x] =y | f Py (u)du (13)
2 L 2
5 o i
' N7 -£x+2nn %
whera from (9a) é
‘?
4
_ -1 |
£, = cos [1-2x] . (14) |
i If we limit.g to the range Olilfli T all interesting values of PA will be ‘
3 obtained; i.e., 0 < PA < 1. We should also vecognize that o in (8) is a 0.1,
%"' Consequently for 0 < £ < n/2 (0 < x < 1/2), only the n = 0 term in (13) will
? . be significant. For /2 < E <7 (1/2 < x < 1), the n = 1 term must also be ;
é taken into account. Specifically E
| £
P[PA < x] = pa(u}du (13a) |
i
-£
:
a
]
i i i i 3 im0y € Y s s e .,a.ﬁd
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A ...
|
14
;
1
for 0 < x < 2 and
£ 2n
X
P[PA < x] :fps(u)du +fp€(u)du (13b)
2ﬂ—£x '

for'% < x < 1, Note that (13b) neglects the contribution for ~Ex <E <0
and 2% < £ < 21 + Ex because they are negligible.

Recalling the definition

P[x < F, < x + AV,
py(x) = Lim AAP LS ‘31; (P[PA ) x]) (15)
APA+0 A
and using (13a), we have
, dE’x d(-gx) 1
DA(X) =pe(E) 35 - pg(-sx) — *0%x<73 (16a)
Using (13b) we have
dEx d(-Ex) i
Pp (%) =p(&) = "pE(2"~Ex) — I (16b)
From (14), we have
dg
e (17
* /x(1-x)

Substituting (17) and (8) into (l6a) and (16b) we consider the combination

resulting from (16a) and (16b) to be

‘g
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W
! 2 )
j ¥ = _r _F 2 LI
- 1(5E) C3(EE) (DT
.‘ 1 ]le 20V0 +o 20 +e 2 o / §
PA\X) = . . (18) '
: av2m Vx(1-x, b
i

T
N It is clear that only the first term on the right hand side will contrib- bod
B ute for 0 < E < M. The second term contributes when Ex and & approach 0 and % é
r ' the third term contributes only when & and Ex approach 7. As we would expect ? %
: _ 4o
4 pA(x) has its waximum value for Ex = £. The probability density functio. L
% § o
¥ e i
X pA(x) is sketched in Fig. 3 with PA = sinZE as a parameter. 3 j
§ 1 5
' i

[8-s-Tesa7]

J X f ‘
it ' o y 'z H H‘E
A P =0 P, 058 =99 tI
b | '<, L‘
g
CHEY 3 ,:%
é :
) X 1 ) X 1 0 X 1 €k
Fig. 3. Probability density functionm. E
Note that the pdf has singularities at x = 0 and 1. However, it is an
L
- integrable singularity and the area under curves shown, over the range
0 <x <1, is finite and equals 1 as it should..
7
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For example let us evaluate the area over a region (0,€) about the x = § sing-
ularity, i.e., <

P[PA < g] = ff; (x)dx

R (19)

0

where € =+ 0. Using (18) we have

J g
P[P, < ]~ 1 e te dx  (20)
0'/2?1’ /x
0

where we have set Ex = 2/x (see (14)) and Vx(1-%) = /x. Rearranging (20)

C2(x + ff;') _ 2(x - € /)

02 02
P[P <egl® e te dx. (21)
GVaT Vx

For x > 0 the numerator of the exponent can be approximated as indicated in

(22)

_;(E)z e , _ 4x, 2 | 2xEC

2 \¢g 2 4 2

P[pA<e]z3———f g g 9 ax (22)
av2n X

=2
3G

ov/2m

2 + 2

= 3/2 5/2
[461/2_ 4(2-¢)e 4e ] (23)
30 5c

Now if € < < 02 (recall 0 < £ < 1), the second and third terms (23) can be

neglected and
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P[P, < €lm e WE. (24) :

c/fv’r’ !

Notice that (24) gives a finite probability indicating that integration over
‘the singularity at x = 0 does indeed give a finite value. With ¢ = 0.1 and

T = 0.2

P[P, < €] = 2/ (25)

where € < ,001. Conversely P[PA >e] =1~ 1,5/, This result will be

“.mulative Distribution of PA

Using the foregoing expression (18), and using numerical integration,

X

P[PA < x] HIPA(u)du (26)

0

o Tomta o ST an B T B

»
j checked in the next section.
was calculeted for 0 = 0.05, 0.1 and 0.2 and PA = 0,01, 0.5, 0.99. PA is the

desired value of PA; it 1s not necessarily the mean, or average, value of P,.

Lot L TR Ml d S

A A
plotted versus magnitude of Ax = (PA - Xx) in Figs. 7, 8 and 9,

A

The results are shown in Figs. 4, 5 and 6. The P[PA -x <P, <P!'+ x] is
|
P[PA < .001] = .07 which agrees reasonably well with the approximate relation-

Notice that for P! = ,01 (Fig. 4), which corresponds to £ = .2, '\j

gship given by Eq. (25). It is also important to note the asymmetrical charactaer of

the curves with respect to x' = PA = ,01 the desired value of PA’ For g = ,2




11

1.0

Q.90

Fig. 4.

Cumulative distribution of PA for P! = 0.01.
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Fig. 7. Probability of P, for a given error in PA' (PA' = 0.01).
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PA’ is & 0.011!

the mean value of P

A’
The knee in the curves shown in Fig. 7 and Fig, 9 13 due to theasymmetry

in the cumulative distribution. In particular the difference in slope for

x > PA to that for x less than PA causes the abrupt change in the slope of the

curves (Figs. 7 and 8) since they are computed from the cumulative distribu-

tion.

Uniform”  Distributed Errors

Let us next ‘assume that the errors in Eq. (5) or (5a) have a uniform
distribution instead of the previously assumed Gaussian distribution. It can
be shown that, if ¢(T£) is distributed uniformly within $(T£) + ¢>o,

g = ¢(T2) - d)('rm) will have a mean value ¢ = 75('(2') - &;(Tm) and it will
have a triangular distribution between § + 26_. 1In particular, the pdf he-

comes

P (L4 55/20,5 28, < u-T <0

2

(28)
e (1 - U=y o0 i}
(1 2%)/2%, 0<u=-£& < 2¢
Using (13) and (14)
Ex E'x
P[P, < x] = 4:) > [ (z¢o-'§+u)du + elf(2¢>o-'€-u)du] (25
o '
x 0
when Ex <E (29a)
£l = t - 20, €, = 04 £ > 20 . (29b)
If T < 29,
16

v(
k'

R R SR AR S RUNE SICLPE e ;= 52 3
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E, =0 (29¢)
g, = 1if £ < 20 - T (29d)
El = 0 1f Ex > 2¢° -F . (29e)
when Ex > I3 :
x
P[P < x] = 1 (2¢ =E-u)du + P[P, < sinz }: (30)
A 46 2 0 A 2
o
E

where £ £ - 2¢° which corresponds to x < c082¢)°. It ie alsp necessary that

E,'x < T+ 2¢°. In order to calculate P[PA < x] when 'rr-2¢o < E <7, we can

use (29) for Ex < T and an appropriate modification of (30). Because this is
not a particularly interesting case (i.e., E > - 2¢°) it will not be
treated here. ‘

Integrating (29) and (30) requires attention to the conditions indicated.
Let us first consider those cases where 2¢° < -E <7 - 2¢o. For E;x < E, let

E;'x - - 2¢°; then

P[PA < x] = ” 5 (gx - g'x) . (31)
o
For Ex >
1 1 ra +
PRy < xl =g ¥ oy (g - 6+ D (5, - D). (31a)
o
When E < 2¢o, we have
E;'
P[P, < x] = 2% (32
[ A X] 26 ] a)
0
17
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for 0 < Ex < E and Ex < 2¢o¥z. There are two possible conditions to consider;

— —

l.edy, £ £ 2¢ =€ and > 2¢OJE. Taking the latter case first

0
12
PRy < x) =2 4 Lo g ety +g -8R (32b)
% 8¢,
for 2¢ - <§ < € and
1 1 [ ] 2 “‘2
P[P, <x] =35 + ” 5 (280 (E,~8 ) + . 7-E] (32¢)
)
for £ < £ < E;‘, where E; = 29, + &,
Now considering the case £ < E£ , we have
p(p, < x) = 15 (4o £ - €7+ E] (324)
4¢0
for E < Ex < £' and
1 . 2 =2 " 2
P[PA <x] = % 5 [Ex - 28 + Zgnch-gx 1. (32e)
[a]
when E; < Ex < E;.

ey

A plot of P[P, < x] for T =m/2 (', = 0.5) and ¢ = 0.1 radian is

shown in Fig. 10. Notice the similarity between this curve and that for

R axiend

B 2T

o = .1 in Fig. 4. As should be expected, uniformly distributed errors with
a maximum value ¢° = 0, the RMS value of errors with a Gaussian distribution,
are more likely to produce the desired value of PA' This present analysis

i shows the possible effects should the actual errors be distributed either as

18
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Fig. 10. Cumulative distribution of PA for Pd = 0.5,
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Gaussian or a finite uniform distribution. Using the foregoing analysis, it

oz

is also interesting to note that for ¢o = 0,1 radian and uniformly distrib-

455k

Ses.

Bt AR

uted errors, an attempt to set PA.S 0.01 will be suc:essful only 507 of ‘the

>
e

time.

Conclusions

N,

Should the measured data show that the errors have a Gaussian distribu- .
tion and they have an RMs error = 5° (= .1 radian) one can expect, from

Fig., 8 (PA = ,99), that 80% of the time the power delivered to the desired

oy

port (say port A) will be within 0.05 dB of the maximum power available. At

the same time the power delivered to PB will be more than 17 dB below power

B s o

i

into the variable power divider. Similarly from Fig. 7, for equal power

division (P‘A = 0,5), 80% of the time the PA will be within 0.3 dB of the

desired value. From these examples we see that only when trying to minimize

L
s Y

PA (or PB) does the variation of ¢(T) e?fect the power division significantly.

P i

i :.,355‘-.(.":-' i '5:—«'-'""'1_;_'; s SR

Use of Eq. (32a), with £ = 0 (P;\ = (), indicates that, with the assumed 5°

RMS error in ¢, P, will be less than -30 dF (referred to the input power)

A
with a probability of 0.62. This operational performance may have question=-

able value in a nulling nntenna when null depth greater than 20 dB 1is desired.
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